If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-245y+4736=0
a = 2; b = -245; c = +4736;
Δ = b2-4ac
Δ = -2452-4·2·4736
Δ = 22137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-245)-\sqrt{22137}}{2*2}=\frac{245-\sqrt{22137}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-245)+\sqrt{22137}}{2*2}=\frac{245+\sqrt{22137}}{4} $
| 11p-6p=20 | | 4m+3m=-14 | | 3t-18t=4=-26 | | w+4/5=-1/4 | | -2x+7=x+7 | | 2x+5x+1+7=7x+8 | | 9g-7g=14 | | 15-6x=7-4x | | 5x^2=256 | | 6×2x=3.84 | | 4c+4c=16 | | 8x-4=-4x-7 | | -3(w-10)=-18 | | -9x+21=-24x+31 | | 2x+x^2-2x+1=4 | | 11/5=12/y | | 6×x×x=3.84 | | z-11/4=2 | | 6x+51=-11x-51 | | 5y+6=-18-4 | | -9c-8c=17 | | 14z-9z=5 | | -9.4m=16 | | 3(7−4a)= | | 0=3a^2+15a+28 | | 6+5=3x+14 | | 15-y=4(15-y) | | x+1/8=x+8 | | F(x)=-2x2/9 | | 6x-7=14-× | | 3x+2(-1/3+2/3x)=4 | | g/11=3.1 |